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RENORMALIZATION OF AN INVERSE SCATTERING THEORY
FOR INHOMOGENEOUS DIELECTRICS

INTRODUCTION

Inverse scattering theory seeks to reconstruct the unknown physical properties of an object from
information contained in the scattering data. In this paper we consider the reconstruction of the dielec-
tric profile of an inhomogeneous slab from the electromagnetic reflection coefficient. Approximate
solutions to this problem are often obtained by considering a limited range of frequencies or
wavelengths. For example, the wave equation for the electric field can be converted into an integral
equation which is then solved by iteration. In the first iteration the Born approximation is the solution
obtained by assuming small phase shifts in the scattered field. The radius of convergence for this
approximation is limited to very small values of the wave-number, so that inversion methods based on
this approximation will have a limited range of applicability.

In this paper we investigate a method to increase the radius of convergence of approximate solu-
tions of inverse scattering problems by using renormalization. We base our inversion method on the
exact theory that has been developed by Kay and Moses [1,2,31 from the mathematical investigations of
Gelfand, Levitan and Marchenko [4,51. The search for approximate solutions to be used for the elec-
tric field within inhomogeneous dielectric layers led us to consider the method of multiple scales [6].

By considering the continuity of the electric field and its derivative at the boundary of the slab
and by using the renormalized electric field, a rapidly convergent solution is obtained that is equivalent
to a second-order perturbation treatment of the exact inverse scattering theory. In the lowest order the
renormalized electric field is equivalent to the WKB approximation [71. This theory is demonstrated by
numerical examples using data obtained from a numerical simulation of scattering from Gaussian and
parabolic dielectric profiles and homogeneous slabs.

INVERSION THEORY

We consider the idealized physical model shown in Fig. 1. A time-harmonic plane-polarized elec-
tromagnetic wave of wave number k - 2ir/k

E 1, (x,k) - ikx  1T, x < -L/2, (1)

is normally incident from the left upon an inhomogeneous dielectric slab of thickness L. The permit-
tivity relative to free space, er, is a function of the geometric distance x, we first demonstrate our
method with e, defined by the truncated Gaussian function

3 e, (x) - {Ae -
&x2

"  IxI 4 L/2

11.0 ,IxJ > L/2

where b is chosen to ensure continuity of e, at IxJ - L/2. The wave amplitude E(x,k) satisfies the
scalar Helmholtz equation
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d2E (x, k) kdxk + e,(x) E(x,k) - 0. (3)

The reflected wave amplitude is

E3,(x,k) - r(k) e-1 , x ( -L/2 (4)

where r(k) is the complex reflection coefficient.

The electromagnetic path length s in the slab is

s-s(x,k) - fVk./e k dx', (5)

which is the Liouville transformation between geometric x-space and path-length s-space [8]. The
inverse problem that we consider is based upon the Helmholtz Eq. (3) with an arbitrary relative permit-
tivity e, (x. If e, Wx is a monotonic function of x and independent of k, differential Eq. (3) can be
transformed into a Schroedinger-type equation in s-space whose potential function q(s) can be deter-
mined uniquely if r(k) is an analytic function of k [1,2]. This theory has been well-developed,
although the transformation to obtain a unique e, (x) from q (s) depends on the functional form of er,
as is evident from Eq. (5), and is, in general, nontrivial.

The inversion method will, perforce, first reconstruct E, in s-space and will then make a transfor-
mation to x-space, based on a priori knowledge of e,(x). For notational convenience, we indicate the

- . i different functional forms of E, in these two spaces by reference to the argument x or s. The Lorentz
model for the permittivity of a collection of free electrons is a simpler special case, where

Er (X,k) - 1 - q(x)/k 2  (6)

and where the profile function q (x), which is the electromagnetic analogue of the quantum-mechanical
potential function, is proportional to the electron density. Substitution of Eq. (6) into the Helmholtz
Eq. (3) leads directly to a Schroedinger-type equation in x-space.

Referring to the Helmholtz Eq. (3), if we could assume that

qi (s,k) - [ e,(X(S)) J 1/4 E(s,k) (7)

then it would be possible to transform Eq. (3) into a Schroedinger equation of the form
d2 0(s,k) 2 Z (

543 . IidS2 + [k- q(s) I ,(s,k) -0 (8)

and where the function q(s) is to be determined. This assumes we know the functional form of E, and
can evaluate the integral in Eq. (5) to obtain x(s) explicitly; for an inverse problem, this a priori infor-
mation would not, in general, be available.

The Fourier transform *(s,t) of *(s,k) satisfies the time-dependent wave equation
I _a 2 a 2
• . Vs't) - - ,(s,t) -q(s) ,*(s,t) - 0 (9)

as2

where t is the time variable with the velocity of light c E 1. In free-space, x < -L/2, the incident
plane wave, Eq. (1), and the incident wave amplitude for Eq. (8), Ij(s,k), are identical; the incident
plane-wave for the time-dependent Eq. (9) is represented by a unit impulse,

2
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T .(s,t) - (S - t) (10)

which produces the reflected transient, or characteristic function,

R(s + t) r(k) e-ik(s +dk. (11)

Due to causality, we must have

R(z) - 0, z < -L/2 (12)

i.e., a reflected transient is not produced until the incident pulse has interacted with the inhomogeneous
medium. It is possible to relate the wave amplitude '(s,t) in the inhomogeneous slab with the wave
amplitude POo(s,t) in the free-space region by the linear transformation (11

w(st) - 'o(S,t) + K(s,z) 'Po(z,t) dz, (13)

where

o(S,t)- 8(s - t) + R(s + ). (14)

From physical considerations we know the %P(s,t) is a right-moving transient, so that

'P(s,t) - 0, s > t. (15)

Thus K(s,t) 0 for t > s. Substituting the expression (14) in (13) and using Eq. (12) and (15)
yields the integral equation

K(st) + R(s + ) +f K(s,z) R(z + t) dz - 0, (16)
t

which is Kay's version of the Gelfand-Levitan-Marchenko integral equation of inverse scattering (31.
Substitution of the representation (13) in the wave Eq. (9) shows that the function K(s,t) satisfies the
same differential equation as the wave amplitude *I (s,t) if the following conditions are imposed,

K(s,-s) - 0, and 2-1 K(s,s) - q(s). (17)
Id~d

"

If the integral Eq. (16) can be solved for the function K(s,t) then the second condition in Eq. (17)
yields the exact solution to this inverse scattering problem [9]. Moses [21 has obtained the second-
order regular perturbation solution for q(s):

q(s) - ds R(2s) + 4 R(2s) 2 (18)
:. .:,ds

This approximate solution of the inverse problem for a Schroedinger equation can provide a starting
point to reconstruct e,(s) [10,111.

-.

Here we go directly to the inverse problem by considering the electric fields within the slab. We
note that by using the Liouville transformation (5) the differential Eq. (3) for the electric field within
the slab can be expressed in terms of the electromagnetic path length s as

d E (s) dE(s)+ g(x) s+ E(s) -, (19)d52  ds

3
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where

g~x W [a 13/2 de,(xW (20)

If the function g(x) is small in magnitude,

max Ig(x) -I < 1, IxI < L/2 (21)

then we can apply a regular perturbation expansion in powers of y to eq. (19). However, such an
expansion would not be uniformly valid due to the presence of secular terms in the higher-order
approximations. Moreover, the explicit functional form of g(x) is unknown in the inverse problem.

In performing the transformation of the Helmholtz Eq. (3) into the Schroedinger Eq. (8), it was
implicitly assumed that x can be determined from eq. (5). The method of multiple scales is used to
provide an effective technique for summing perturbation sequences when the explicit functional form
of E, (x) is not known. Using this method, we seek an approximate solution for the electric field within
the slab in the form

E(s(x,k),x) = Eo(s,x) + YEI(s,x) + y2E,(s,x) + .... (22)

where s and x are regarded as the fast and slow variables respectively. The differential equation for
E(s,x) can now be written through the first order in the perturbation parameter y:

-Y s Eo(s,x) + Eo(s,x) = 0 (23)
as

,. E1(sx) 8Eo(s,x) 2 a2

as1: 2  +E 1(s,x)--g(x) EO s~x0
• as2  as Vles- x Xo(SX)

The general solution of Eq. (23) is given by

Eo(s(x,k),x) - Ao(x) eis + Bo(x) e-i (24)

Since we are only interested in right-traveling waves, we set BO(x) - 0. The zero-order solution is cou-
pled with the first-order equation for the electric field amplitude. This coupling leads to secular growth
in E1(s,x), which violates energy conservation. In order to eliminate this growth the functional form
of Ao(x) must be determined from

32de, 12[~xJ/2 aA E4 0e,(x) d" Ao(x) + 2 e,(x) as 0, (25)

which has the solution
Ao(x) - [ e,(X) ] -I/4 (26)

so that the renormalized form for Eo(s,x) becomes

g Eo(sX) - es[ e,(x) 14, s - s(x,k). (27)

The functional form (27) was used to transform the original Helmholtz Eq. (3) into a Schroedinger
equation. The multiple scale technique demonstrates that this functional form arises from denying sec-
ular growth in the first-order correction for the electric field amplitude. This process of summing per-turbation expansions to make them more uniformly valid is called renormalization [121.

4
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Equation (19) can be converted into an integral equation by using an appropriate Green's func-
tion. Consideration of the asymptotic form of the wave solution gives an exact expression for the
reflection coefficient,

r(k) --- L/ E,(x) 1-3/2 d E(s(x,k),x) ds. (28)
d. ds .

Substituting the renormalized solution (27) into Eq. (28) and application of the Fourier transform gives
the approximate solution for E,(s) in s-space

f2s

C,(s) - exp( -4f . R(z) (29)

where the R (z) term in the exponent represents the Fourier transform of the scattering data, as dis-
cussed in the next section.

A complete inversion method should also be able to obtain E, as a function of the geometric dis-
tance x, as discussed by Kay [1]. The Born approximation relates e, in x-space to the Fourier
transform of r(k). It is possible with our inversion method to transform from s-space to x-space if the
slab thickness L is known. The WKB approximation corresponds to the first term of the perturbation
solution in k-space.

Since we want to relate a discrete set of data points for e,(s) to the corresponding points within
the slab in x-space, we consider the inhomogeneous region to composed of thin dielectric s ' 0 of
thickness A, so that x, - ZL + ( - 1) A, I - 1, ... N. The number of data points N can be deter-

2
mined since we also know the beginning and end points of the slab in both x- and s-spaces; namely,

Li?
x, - -L/2 corresponds to s - 0 and x# - L/2 corresponds to s - k -'2 VP7 dy " as shown in

Fig. 3. In this example, N can be chosen conveniently to divide the region in s-space where E, differs
from the permittivity of free space; in this example, N is approximately 50. In order to reconstruct the
dielectric profile in x-space, we expand the profile in a Maclaurin series about the center of the slab

e,(x) - e,(0) + e,(O) x + E;(O) x2/2 + .... (30)
The data points for e,(s) obtained from Eq. (29) can be transformed to the equivalent data points for

e,(x) by fitting to a least squares polynomial whose coefficients can be related to Eq. (30).

GENERATION OF SCATTERING DATA

The experimental reflection data are simulated by numerical integration of the exact Riccati equa-
tion for the complex reflection coefficient, r(k). The direct scattering problem is modeled by a single
slab whose permittivity profile is a Gaussian function centered at the midpoint of the inhomogeneous
region, as shown in Fig. 1. The magnitude of the relative permittivity e, is matched to the relative per-
mittivity of free space at the boundaries of the slab, Ixj - L/2. The reflection coefficient at the left -.
face of the slab r(k) - r(k,-L/2), which is used as a data point for inversion, is obtained from the
solution to the Riccati equation [131

dr (x,k)- - 12 + [ 1 2 (31)

with the boundary condition r(k,+L/2) - 0. The reflection coefficient r(k) is calculated at discrete
points x, through the slab for each value of wavenumber k.

5
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We use a fifth-order Runge-Kutta method with 500 increments in x to compute the complex
reflection coefficients, r(k), at discrete wavenumbers, k - (1 - p) 8, p-1 ...- ,M (in our case
M - 256 points were used for k - 0 to 25, so that the increment 8 - 0.098). The modulus of r(k) is
shown in Fig. 2 for a typical set of parameters.

For use in the inversion method, this set of reflection data (31) is then represented by a complex
Fourier series,

' r M- 2
r(k.) ."- + a,. cos(O.) -ibm sin(chin) + Tam cos(irkp) (32)

where 0. - mkpr/p, M - 256 and P is the half-period of the reflection coefficient. We note that our
- inversion algorithm assumes r(k) is periodic; as shown in Fig. 2, P - 25, approximately. The real part

of the reflection coefficient is represented by a truncated cosine series whose coefficients are deter-
" -. mined by requiring that the data points collocate with the series at the appropriate wavenumbers; the

imaginary part of the reflection data is represented by a sine series, so the r*(k) - r(-k), k real. This
continuous representation of the complex reflection coefficient enables interpolation and accurate
numerical determination of the minima and maxima of r(k). Moreover, the Fourier representation
enables an analytic evaluation of the function R (s), which is needed for the solution of the integral Eq.
(16).

DISCUSSION OF RESULTS

We have demonstrated an inversion method for scattering data from a smooth dielectric profile.
The scattering data of Fig. 2 were used in our inversion method to reconstruct the permittivity profile
of Fig. 3. Table 1 compares the reconstructed results with several known Gaussian profiles; the param-
eters A ,b were obtained by a regression analysis on Gaussian profiles in order to test the accuracy of
this inversion method for increasing gradients in the dielectric inhomogeneity. This inhomogeneity is
measured by the parameter -y, which can be shown from Eq. (19) to be equal to b/2. As expected,
good agreement was obtained for smaller values of b and poorer agreement as b was increased. The
correlation coefficient p tests the validity of the regression model; p - 1 indicates that the recon-
structed profile agrees perfectly with the model profile.

Table 2 tests the accuracy of our method when applied to three different profiles: Gaussian, pa-
rabola, and homogeneous slab. Simulated numerical scattering data were generated by solving for each
of these profiles, as characterized by equivalent A and b parameters. The inversion method was then
applied to the three sets of data and profiles of e, were obtained in s-space and in x-space. By assum-
ing that the unknown profile for e, (x) can be developed as a series of the form (30), the coefficients
of the least-squares polynomial can be related to the parameters A, b of an assumed Gaussian, para-
bolic, or homogeneous slab model. A regression analysis with the three model profiles was used to
compare the profile parameters A, b; the correlation coefficients p are also shown in Table 2. We note
that the b parameters for the parabola and the homogeneous slab do not ensure continuity of E, at

Ix I - -. For example, the approximation for the Gaussian profile is written

-,(x) A(1 - bx). (33)

The element along the diagonal show results due to "good guesses", i.e., the least-square analysis com-
pared the reconstructed profile with the same model profile that was used in the direct calculation of
the reflection data. The off-diagonal elements shows results comparing "wrong" regression models with
different direct models. Note that this matrix is not symmetric.

From these results we see that, to second order, it is not clear whether the Gaussian or parabola is
the better fit; the homogeneous slab is clearly a poor fit. The correlation coefficients for the regression

K 6
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analysis for the homogeneous slab have not been display since the least-squares fit is a simple arith-

metic average, so the correlation coefficient cannot be defined. The qualitative features of the slab can
be reconstructured by the inversion algorithm, but the magnitude of e, is too large by 20-30%. This is
expected since the homogeneous slab presents a sharp discontinuity that violates condition (21) for
convergence of the perturbation series. We conjecture that our inversion method can be extended to
discontinuities and steep gradients by boundary-layer theory.

The results of Table 1 show that the renormalized inversion theory has a larger radius of conver-
gence than the Born approximation. Our inversion method also includes phase information that is
neglected in the Born approximation (141,

(kL) (.,(x) - 1) < < 1 (34)

We note that for L - 2.0 and A = 1.80, as used in our examples, the Born approximation is not valid
for wavenumbers greater than 0.60 in Fig. 2. Profiles reconstructed with the Born approximation over
a range of k-space of 0 to 25 here in complete disagreement with the known profiles. Renormalization
has extended the radius of convergence in k-space by two orders of magnitude. The results of Table 2
suggest that the regression analysis can be extended to higher orders to consider many different model
profiles. Extensions of the inversion theory to include dielectric absorption and scattering at oblique
incidence would require generalizing the solution of the integral Eq. (16).
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Table 1I Comparison of Reconstructed Profifles
with Input Gaussian Profiles

Input parameters Reconstructed parameters
A b A bp
1.50 0.41 1.59 0.41 0.99

1.80 0.59 1.94 0.60 0.97

4.00 1.39 4.70 1.25 0.95

6.00 1.79 7.19 1.55 0.95

8.00 2.08 9.54 1.59 0.94

10.00 2.30 11.54 1.87 0.92

Table 2 - Comparison of Inversion Results for Parameters A. b
for Gaussian and Parabolic Profiles and Homogeneous Slabs.

Input Gaussian Profile Parameters: A - 1.80,b - 0.59,L - 2.0

_________Regression Model
Direct Model Gaussian Parabola Slab

Gaussian A - 1.94 A - 1.92 A =1.60

b-0.60 b-0.47b0
p -0.9 7  p -0.96

Parabola A - 1.64 A - 1.61 A -1.31

b-O.71 b -0.53 b 0

Slab A -3.40 A - 3.35 A -2.98
b -0.43 b -0.31 b 0

__________ p_-__0.43 p -0.43 ____
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--- P- t(k) *xp(Ikx

r(k) *xp(-Ikx) 4-

tX
-L/2 L/2

Fig. I - Physical model for electromagnetic reflection from an inhomogeneous dielectric slab. The
slab width is L, the permittivity e, (x) is a Gaussian function e, (x) - e 2 and the reflection
coefficient is rlk).

.30~

0 5 10 15 20 25

Fig. 2 - Simulated reflection data to be inverted to obtain the profile of permittivity
Se, Reflection coefficient rlk) data given for 256 discrete values of k. In this

example. A -1.80 and b -0.59. The Born approximation is valid for k < 0.6.
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SCIM

Er Tb= .59
L= 2.00

* 2.0-1

X=-L/2I\L/

-2 -1 0 1 2 3 4 5

Fig. 3 -Profile of permittivity e, plotted as a function of path length s.
This is a plot of approximately 130 values (511/4) obtained by applying
the renormalized inversion theory to the data points of Fig. 2. Limits of
slab in x-space are indicated.
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